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Introduction 

One of the most prominent but least understood neuroanatornical features of the 
cerebral cortex is feedback. Neurons within a cortical area generally receive massive 
excitatory feedback from other neurons in the same cortical area. Some of these 
neurons, especially those in the superficial layers, send feedforward axons to higher 
cortical areas while others neurons, particularly those in the deeper layers, send 
feedback axons to lower cortical areas. What is the functional sigruficance of these 
local and long-range feedback connections? 

In this chapter, we explore the following two hypotheses: (a) feedback connections 
from a higher to a lower cortical area carry predictions of expected neural activity 
in the lower area, while the feedforward connections carry the differences between 
the predictions and the actual neural activity; and (b) recurrent feedbayk connections 
between neurons within a cortical area are used to learn, store, and predict temporal 
sequences of input neural activity. Together, these two types of feedback connectibns 
help instantiate a hierarchical spatiotemporal generative model of cortical inputs. 

The idea that feedback connections may instantiate a hierarchical generative model 
of sensory inputs has been proposed previously in the context of the Helmholtz ma- 
chine [14,15]. However, feedback connections in the Helmholtz machine were used 
only during training and played no role in perception, which involved a single feed- 
forward pass through the hierarchical network. On the other hand, the possibility of 
feedback connections carrying expectations of lower level activity and feedforward 
connections carrying error signals was first studied by MacKay in the context of his 
epistemological automata [24]. More recently, similar ideas have been suggested by 
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Pece [34] and Mumford [31] as a model for corticothalamic and cortical networks. 
The idea of using lateral or recurrent feedback connections for storing temporal dy- 
namics has received much attention in the neural networks community [21,19, 361 
and in models of the hippocampus [28, 11. However, in the case of cortical mod- 
els, recurrent connections have been used mainly to amplify weak thalamic inputs 
in models of orientation [7, 421 and direction selectivity [17, 44, 291. Recent results 
on synaptic plasticity of recurrent cortical connections indicate a dependence on the 
temporal order of pre- and postsynaptic spikes: synapses that are activated slightly 
before the postsynaptic cell fires are strengthened whereas those that are activated 
slightly after are weakened [26]. In this chapter, we explore the hypothesis that such 
a synaptic learning rule allows local recurrent feedback connections to be used for 
encoding and predicting temporal sequences. Together with corticocortical feedback, 
these local feedback connections could allow the implementation of spatiotemporal 
generative models in recurrent cortical circuits. 

Spatiotemporal Generative Models 

Figure 16.1A depicts the problem faced by an organism perceiving the external world. 
The organism does not have access to the hidden states of the world that are caus- 
ing its sensory experiences. Instead, it must solve the "inverse" problem of estimating 
these hidden state parameters using only the sensory measurements obtained from 
its various sensing devices in order to correctly interpret and understand the external 
world [35]. Note that with respect to the cortex, the definition of an "external world" 
need not be restricted to sensory modalities such as vision or audition. The cortex 
may learn and use internal models of "extra-cortical" systems such as the various 
musculo-skeletal systems responsible for executing body movements [47]. 

Perhaps the simplest mathematical form one can ascribe to an internal model 
is to assume a linear generative model for the process underlying the generation of 
sensory inputs. In particular, at any time instant t, the state of the given input 
generating process is assumed to be characterized by a Ic-element hidden state vector 
r(t) .  Although not directly accessible, this state vector is assumed to generate a 
measurable and observable output I(t)  (for example, an image of n pixels) according 
to: 

where U is a (usually unknown) generative (or measurement) matrix that relates 
the k x 1 state vector r( t )  to the n x 1 observable output vector I(t) ,  and n( t )  is a 
Gaussian stochastic noise process with mean zero and a covariance matrix given by 
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Figure 16.1. Internal Models and the Problem of Optimal Estimation of Hidden State " 
(A) The problem faced by an organism relying on & internal model of its environment 
(from [33]). The underlying goal is to optimally estimate, at each time instant, the 
hidden state of the environment given only the sensory measurements I. (B) depicts 
a single-level Kalman filter solution to the estimation problem. The internal model is 
encoded jointly by the state transition matrix 7 and the generative matrix g, and the 
filter uses this internal model to compute optimal estimates i: of the current state r of 
the environment. 
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C = ~ [ n n ~ ]  (E denotes the expectation operator and T denotes transpose). Note 
that this is a sufficient description of n since a Gaussian distribution is completely 
specified by its mean and covariance. 
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In addition to specifying how the hidden state of the observed process generates 
a spatial image, we also need to specify how the state itself changes with time t. We 
assume that the transition from the state r(t - 1) at time instant t - 1 to the state r(t) 
at the next time instant can be modeled as: 

where V .is a (usually unknown) state transition (or prediction) matrix and m is a 
Gaussian noise process with mean m(t) and covariance II = E [(m - iii) (m - 
In other words, the matrix V is used to characterize the dynamic behavior of the 
observed system over the course of time. Any difference between the actual state r(t) 
and the prediction from the previous time step Vr(t - 1) is modeled as the stochastic 
noise vector m(t  - 1). 

Optimization Functions 

The parameters r, U, and V in the spatiotemporal generative model above can be 
estimated and learned directly from input data if we can define an appropriate 
optimization function with respect to r, U, and V. For the present purposes, assume 
that we know the true values of U and V, and we therefore wis'h to find, at each time 
instant, an optimal estimate ?(t) of the current state r(t) of the observed process using 
only the measurable inputs I(t). 

Suppose that we have already computed a prediction i; of the current state r based 
on prior data. In particular, let ~ ( t )  be the mean of the current state vector before 
measurement of the input data I at the current time instant t. The corresponding 
covariance matrix is given by E[(r - S)(r - T ) ~ ]  = M. A common optimization 
function whose minimization yields an estimate for r is the least-squares criterion: 

n k 

J1 = x (I" uy2 + x ( r i  - - F ~ ) ~  = (I - u ~ ) ~ ( I  - Ur) + (r - ~ ) ~ ( r  -F) (16.3) 
i= 1 i= 1 

where the superscript i denotes the ith element or row of the superscripted vector 
or matrix. For example, in the case where I represents an image, the value for 
r that minimizes this quadratic function is the value that (1) yields the smallest 
sum of pinel-wise differences (squared residual errors) bemeen the image I and its 
reconstruction Ur obtained using the matrix U, and (2) is also as close as possible to 
the prediction r computed from prior data. 
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The quadratic optimization function above is a special case of the more general 
weighted least-squares criterion [lo, 351: 

J = (1- ~ r ) ~ C - ' ( 1  - Ur) + (r - F ) ~ M - ' ( ~  -F) (1 6.4) 

The weighted least-squares criterion becomes meaningful when interpreted in terms 
of the stochastic model described in the previous section. Recall that the measure- 
ment equation 16.1 was characterized in terms of a Gaussian with mean zero and 
covariance C. Also, as given in the previous paragraph, r follows a Gaussian distri- 
bution with mean T and covariance M .  Thus, it can be shown that J is simply the 
sum of the negative log of the (Gaussian) probability of generating the data I given 
the state r, and the negative log of the (Gaussian) prior probability of the state r: 

J = (-log P(1lr)) + (- log P(r)) (1 6.5) 

The first term in the above equation follows from the fact that P(1lr) = P(1, r)/P(r) = 
P(n, r) /P(r) = P(n), assuming P(n, r) = P(n)P(r). Now, note that the posterior 
probability of the state given the the input data is given by (using Bayes theorem): 

B$ taking the negative log of both sides (and ignoring the term due to P(1) since it is a 
fixed quantity), we can conclude that minimizing J is exactly the same as maximizing 
the posterior probability of the state r given the input data I. 

Predictive Coding 

The optimization function J formulated in the previous section can be minimized to 
find the optimal value ? of the state r by setting $ = 0: 

-uTIF1 (I - UF) + M-' (? - T) = 0 

which yields: 
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Using the substitution N ( t )  = (UTX-lU + M y l ) - l  and rearranging the terms in the 
above equation, we obtain the following predictive coding equation (also known as 
the Kalmanjlter in optimal control theory [lo]): 

This equation is of the form: 

New Estimate = Old Estimate + Gain x Sensory Residual Error (16.10) 

The gain matrix K( t )  = N(t)UTX(t)-I in Equation 16.9 determines the weight given 
to the sensory residual in correcting the old estimate r. Note that this gain can be 
interpreted as a form of "signal-to-noise" ratio: it is determined by the covariances 
C and M, and therefore effectively trades off the prior estimate F against the sensory 
input I according to the uncertainties in these two sources. The Kalman filter estimate 
i;' is in fact the mean of the Gaussian distribution of the state r after measurement of I 
[lo]. The matrix N ,  which performs a form of divisive normalization, can likewise be 
shown to be the corresponding covariance matrix. 

Recall that i; and M were the mean and covariance before measurement of I. We can 
now spec* how these quantities can be updated over time: 

The above equations propagate the estimates of the mean and covariance (2 and N 
respectively) forward in time to generate the predictions F and M for the next time 
instant. Figure 16.2A summarizes the essential components of the predictive coding 
model (see also Figure 16.1B). 

Predictive Coding and Cortical Feedback 

The cerebral cortex is usually characterized as a 6-layered structure, where layer 4 
, is typically the "input" layer and layer 5 is typically the "output" layer. Neurons in 

layers 213 generally project to layer 4 of "higher" cortical areas while the deeper 
layers, including layer 6, project back to the "lower" area (see Figure 16.28). Further 
details and area-specific variations of these rules can be found in the review article 
by Van Essen [46]. 
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Figure 16.2. The Predictive Coding Model. (A) Schematic diagram of the predictive 
coding model. (B) The pattern of interlaminar connectivity in primary visual cortex 
(after 191). (C) A possible mapping of the components of the predictive coding model 
onto cortical circuitry. 

In the predictive coding model, one needs to predict one step into the future using 
Equation 16.11, obtain the next sensory input I(t), and then correct the predictionF(t) 
using the sensory residual error (I(t) - UF(t)) and the gain K(t) = N ( ~ ) U ~ C - I .  This 
yields the corrected estimate f (t), which is then used to make the next prediction 
r(t + I). 

This suggests the following mapping between. the predictive coding model and 
cortical anatomy. Feedback connections from a higher cortical area to a lower area 
may carry the prediction UF(t) to the lower area, while the feedforward connections 
may carry the prediction error (I(t) - UF(t)). Here, I(t) is the input signal at the lowest 
level (for example, the lateral geniculate nucleus (LGN)). The deeper layer neurons, 
for example those in layer 6, are assumed to implement the feedback weights U while 
the connections to input layer 4 implement the synaptic weights uT. Neurons in the 
"output" layer 5 maintain the current estimate F(t) and the recurrent intracortical 
connections between neurons in layer 5 are assumed to implement the synaptic 
weights V .  This suggested mapping is depicted in Figure 16.2C. Note that this 
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mapping is at best extremely coarse and neglects several important issues, such as 
how the covariance and gain matrices are implemented. 

The model described above can be extended to the hierarchical case, where each 
level in the hierarchy receives not only bottom-up error signals (as described above) 
but also top-down errors from higher levels (see 136, 371 for more details). Such a 
model provides a statistical explanation for nonclassical receptive field effects involv- 
ing orientation contrast exhibited by neurons in layer 2/3 [37]. In these experiments, 
an oriented stimulus, such as a grating, evokes a strong response from a cortical cell 
but this response is suppressed when the surrounding region is filled with a stimu- 
lus of identical orientation. The neural response is strongest when the orientation of 
the central stimulus is orthogonal to the stimulus orientation of the surrounding re- 
gion. In the predictive coding model, neurons in layers 2/3 carry error signals. Thus, 
assuming that the synaptic weights of the network have been developed based on 
natural image statistics, the error (and hence the neural response in layers 2/3) is 
smallest when the surrounding context can predict the central stimulus; the response 
is largest when the central stimulus cannot be predicted from the surrounding con- 
text, resulting in a large error signal. Such an explanation is consistent with Barlow's 
redundancy reduction hypothesis [3,4] and Mumford's Pattern Theoretic approach 
[32]. It differs from the explanation suggested by Wainwright, Schwartz, and Simon- 
celli based on divisive normalization (see their chapter in this book), although the 
goal in both approaches is redundancy reduction. 

Spike-Timing Dependent Plasticity and Predictive Sequence Learning 

The preceding section sketched a possible mapping between cortical anatomy and 
an algorithm for predictive coding. An important question then is whether there 
exists neurophysiological evidence supporting such a mapping. In this section, we 
focus specifically on the hypothesis, put forth in the previous section, that recurrent 
intracortical connections between neurons in layer 5 implement the synaptic weights 
V that are used in the predictive coding model to encode temporal sequences of the 
state vector r(t). 

Recent experimental results suggest that recurrent excitatory connections between 
cortical neurons are modified according to a spike-timing dependent Hebbian learn- 
ing rule: synapses that are activated slightly before the cell fires are strengthened 
whereas those that are activated slightly after are weakened [26] (see also [22,48,8,1, 
20,41,43]). Such a time-sensitive learning rule is especially well-suited for learning 
temporal sequences [I, 28,381. 

To investigate how such a timing-dependent learning rule could allow predictive 
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learning of sequences, we used a two-compartment model of a cortical neuron con- 
sisting of a dendrite and a soma-axon compartment. The compartmental model was 
based on a previous study that demonstrated the ability of such a model to repro- 
duce a range of cortical response properties [25]. To study synaptic plasticity in this 
model, excitatory postsynaptic potentials (EPSPs) were elicited at different time de- 
lays with respect to postsynaptic spiking by presynaptic activation of a single exci- 
tatory synapse located on the dendrite. Synaptic currents were calculated using a ki- 
netic model of synaptic transmission [18] with model parameters fitted to whole-cell 
recorded AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid) currents 
(see Methods for more details). Other inputs representing background activity were 
modeled as sub-threshold excitatory and inhibitory Poisson processes with a mean 
firing rate of 3 Hz. Synaptic plasticity was simulated by incrementing or decrement- 
ing the value for maximal synaptic conductance by an amount proportional to the 
temporal-difference in the postsynaptic membrane potential at time instants t + At 
and t for presynaptic activation at time t 1381. The delay parameter At was set to 5 
ms for these simulations; similar results were obtained for other values in the 5-15 
ms range. 

, Figure 16.3A shows the results of pairings in which the postsynaptic spike was 
triggered 5 ms after and 5 ms before the onset of the EPSP respectively. While the 
peak EPSP amplitude was increased 58.5% in the former case, it was decreased 
49.4% in the latter case, qualitatively similar to experimental observations [26]. The 
critical window for synaptic modifications in the model was examined by varying 
the time interval between presynaptic stimulation and postsynaptic spiking (with 
At = 5 ms). As shown in Figure 16.3B, changes in synaptic efficacy exhibited a 
highly asymmetric dependence on spike timing similar to physiological data [8]. 
Potentiation was observed for EPSPs that occurred between 1 and 12 ms before the 
postsynaptic spike, with maximal potentiation at 6 ms. Maximal depression was 
observed for EPSPs occurring 6 ms after the peak of the postsynaptic spike and 
this depression gradually decreased, approaching zero for delays greater than 10 
ms. As in rat neocortical neurons 1261, Xenopus tectal neurons [48], and cultured 
hippocampal neurons [8], a narrow transition zone (roughly 3 ms in the model) 
separated the potentiation and depression windows. 

To see how a network of model neurons can learn to predict sequences using the 
learning mechanism described above, consider the simplest case of two excitatory 
neurons N1 and N2 connected to each other, receiving inputs from two separate 
input neurons I1 and I2 (Figure 16.4A). Suppose input neuron I1 fires before input 
neuron I2, causing neuron N1 to fire (Figure 16.4B). The spike from N1 results in 
a sub-threshold EPSP in N2 due to the synapse 52. If input arrives from I2 any time 
between 1 and 12 ms after this EPSP and the temporal summation of these two EPSPs 
causes N2 to fire, the synapse S2 will be strengthened. The synapse S1, on the other 
hand, will be weakened because the EPSP due to N2 arrives a few milliseconds after 
N1 has fired. Thus, on a subsequent trial, when i+ut I1 causes neuron N1 to fire, 
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Figure 16.3. Synaptic Plasticity in a Model Neocortical Neuron. (from [39]) (A) (Left 
Panel) The response at the top (labeled "before") is the EPSP invoked in the model neu- 
ron due to a presynaptic spike (Sl) at an excitatory synapse. Pairing this presynaptic 
spike with postsynaptic spiking after a 5 ms delay ("pairing") induces long-term poten- 
tiation as revealed by a n  enhancement in the peak of the EPSP evoked by presynaptic 
simulation alone ("after"). (Right Panel) If presynaptic stimulation (S2) occurs 5 ms after 
postsynaptic firing, the synapse is weakened resulting in a corresponding decrease in 
peak EPSP amplitude. (B) Critical window for synaptic plasticity obtained by varying 
the delay between presynaptic stimulation and postsynaptic spiking (negative delays 
refer to cases where presynaptic stimulation occurred before the postsynaptic spike). 

it in turn causes N2 to fire several milliseconds before input I2 occurs due to the 
potentiation of the recurrent synapse S2 in previous trial(s) (Figure 16.4C). Input 
neuron I2 can thus be inhibited by the predictive feedback from N2 just before the 
occurrence of imminent input activity (marked by an asterisk in Figure 16.4C). This 
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Figure 16.4. Leaming to Predict using Spike-Timing Dependent Hebbian Plasticity. 
(from [39]) (A) A simple network of two model neurons N1 and N2 recurrently con- 
nected via excitatory synapses S1 and S2. Sensory inputs are relayed to the two model 
neurons by input neurons I1 and I2. Feedback from N1 and N2 inhibit the input neu- 
rons via inhibitory interneurons (darkened circles). (B) Activity in the network elicited 
by the input sequence I1 followed by 12. Notice that N2 fires after its input neuron I2 
has fired. (C) Activity in the network elicited by the same input sequence after 40 trials 
of learning. Notice that due to the strengthening of synapse S2, neuron N2 now fires 
several milliseconds before the time of expected input from I2 (dashed line), allowing 
it to inhibit I2 (asterisk). On the other hand, synapse S1 has been weakened, thereby 
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preventing re-excitation of N1 (downward arrows show the corresponding decrease in 
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course of learning. Synaptic strength was defined as maximal synaptic conductance in 
the kinetic model of synaptic transmission (see Methods). (E) Latency of the predictive 
spike in neuron N2 during the course of learning measured with respect to the time of 
input spike in I2 (dotted line). Note that the latency is initially positive (N2 fires after 
12) but later becomes negative, reaching a value of up to 7.7 rns before input I2 as a 
consequence of learning. 
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inhibition prevents input I2 from further exciting N2. Similarly, a positive feedback 
loop between neurons N1 and N2 is avoided because the synapse S1 was weakened 
in previous trial(s) (see arrows in Figures 16.4B and 16.4C). Figure 16.4D depicts 
the process of potentiation and depression of the two synapses as a function of the 
number of exposures to the 11-12 input sequence. The decrease in latency of the 
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predictive spike elicited in N2 with respect to the timing of input I2 is shown in 
Figure 16.4E. Notice that before learning, the spike occurs 3.2 ms after the occurrence 
of the input whereas after learning, it occurs 7.7 ms before the input. This simple 
example helps to illustrate how subsets of neurons may learn to selectively trigger 
other subsets of neurons in anticipation of future inputs while maintaining stability 
in the recurrent network. 

Comparisons to Awake Monkey Visual Cortex Data 

To facilitate comparison with published neurophysiological data, we have focused 
specifically on the problem of predicting moving visual stimuli. We used a network of 
recurrently connected excitatory neurons (as shown in Figure 16.5A) receiving retino- 
topic sensory input consisting of moving pulses of excitation (8 ms pulse of excitation 
at each neuron) in the rightward and leftward directions. The task of the network was 
to predict the sensory input by learning appropriate recurrent connections such that 
a given neuron in the network can fire a few miUiseconds before,fhe arrival of its 
input pulse of excitation. The network was comprised of two parallel chains of neu- 
rons with mutual inhibition (dark arrows) between corresponding pairs of neurons 
along the two chains. The network was initialized such that within a chain, a given 
excitatory neuron received both excitation and inhibition from its predecessors and 
successors. This is shown in Figure 16.5B for a neuron labeled '0'. Inhibition at a given 
neuron was mediated by an inhibitory interneuron (dark circle) which received exci- 
tatory connections from neighboring excitatory neurons (Figure 16.5B, lower panel). 
The interneuron received the same input pulse of excitation as the nearest excitatory 
neuron. Maximum conductances for all synapses were initialized to small positive 
values (dotted lines in Figure 16.5C) with a slight asymmetry in the recurrent exci- 
tatory connections for breaking symmetry between the two chains. The initial asym- 
metry elicited a single spike slightly earlier for neurons in one chain than neurons in 
the other chain for a given motion direction, allowing activity in the other chain to be 
inhibited. 

To evaluate the consequences of synaptic plasticity, the network of neurons was 
exposed alternately to leftward and rightward moving stimuli for a total of 100 trials. 
The excitatory connections (labeled 'EXC' in Figure 16.5B) were modified according 
to the spike-timing dependent Hebbian learning rule in Figure 16.3B while the ex- 
citatory connections onto the inhibitory interneuron (labeled 'INH') were modified 

- according to an asymmetric anti-Hebbian learning rule that reversed the polarity of 
the rule in Figure 16.3B [6]. 

The synaptic conductances learned by two neurons (marked N1 and N2 in Fig- 
ure 16.5A) located at corresponding positions in the two chains after 100 trails of 
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Figure 16.5. Emergence of Direction Selectivity in the Model. (A) A model network 
consisting of two chains of recurrently connected neurons receiving retinotopic inputs. 
A given neuron receives recurrent excitation and recurrent inhibition (white-headed 
arrows) as well as inhibition (dark-headed arrows) from its counterpart in the other 
chain. (B) Recurrent connections to a given neuron (labeled '0') arise from 4 preceding 
and 4 succeeding neurons in its chain. Inhibition at a given neuron is mediated via a 
GABAergic interneuron (darkened circle). (C) Synaptic strength of recurrent excitatory 
(EXC) and inhibitory (INH) connections to neurons N1 and N2 before (dotted lines) 
and after learning (solid lines). Synapses were adapted during 100 trials of exposure 
to alternating leftward and rightward moving stimuli. (D) Responses of neurons N1 
and N2 to rightward and leftward moving stimuli. As a result of learning, neuron N1 
has become selective for rightward motion (as have other neurons in the same chain) 
while neuron N2 has become selective for leftward motion. In the preferred direction, 
each neuron starts firing several milliseconds before the actual input arrives at its soma 
(marked by an asterisk) due to recurrent excitation from preceding neurons. The dark 
triangle represents the start of input stimulation in the network. 

exposure to the moving stimuli are shown in Figure 16.5C (solid line). As expected 
from the learned asymmetric pattern of connectivity, neuron N1 was found to be 
selective for rightward motion while neuron N2 was selective for leftward motion 
(Figure 16.5D). Moreover, when stimulus motion is in the preferred direction, each 
neuron starts firing a few milliseconds before the time of arrival of the input stim- 
ulus at its soma (marked by an asterisk) due to recurrent excitation from preceding 
neurons. Conversely, motion in the non-preferred direction triggers recurrent inhi- 
bition from preceding neurons as well as inhibition from the active neuron in the 
corresponding position in the other chain. 

Similar to complex cells in primary visual cortex, model neurons are direction 
selective throughout their receptive field because at each retinotopic location, the 
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corresponding neuron in the chain receives the same pattern of asymmetric excitation 
,and inhibition from its neighbors as any other neuron in the chain. Thus, for a 
given neuron, motion in any local region of the chain will elicit direction selective 
responses due to recurrent connections from that part of the chain. This is consistent 
with previous modeling studies [l l]  suggesting thataecurrent connections may be 
responsible for the spatial-phase invariance of complex cell responses. Assuming a 
200 pm separation between excitatory model neurons in each chain and utilizing 
known values for the cortical magnification factor in monkey striate cortex [45], one 
can estimate the preferred stimulus velocity of model neurons to be 3.1°/s in the 
fovea and 27.g0/s in the periphery (at an eccentricity of 8"). Both of these values 
fall within the range of monkey striate cortical velocity preferences ( lO/s  to 32 "/s) 
[46,23]. 

The model predicts that the neuroanatomical connections for a direction selective 
neuron should exhibit a pattern of asymmetrical excitation and inhibition similar 
to Figure 16.5C. A recent study of direction selective cells in awake monkey V1 
found excitation on the preferred side of the receptive field and inhibition on the 
null side consistent with the pattern of connections learned by the model [23]. For 
comparison with this experimental data, spontaneous background activity in the 
model was generated by incorporating Poisson-distributed random excitatory and 
inhibitory alpha synapses on the dendrite of each model neuron. Post stimulus 
time histograms (PSTHs) and space-time response plots were obtained by flashing 
optimally oriented bar stimuli at random positions in the cell's activating region. As 
shown in Figure 16.6, there is good qualitative agreement between the response plot 
for a direction-selective complex cell and that for the model. Both space-time plots 
show a progressive shortening of response onset time and an increase in response 
transiency going in the preferred direction: in the model, this is due to recurrent 
excitation from progressively closer cells on the preferred side. Firing is reduced 
to below background rates 40-60 ms after stimulus onset in the upper part of the 
plots: in the model, this is due to recurrent inhibition from cells on the null side. The 
response transiency and shortening of response time course appears as a slant in the 
space-time maps, which can be related to the neuron's velocity sensitivity (see [23] 
for more details). 

Conclusions 

This chapter reviewed the hypothesis that (i) feedback connections between cortical 
areas instantiate probabilistic generative models of cortical inputs, and (ii) recurrent 
feedback connections within a cortical area encode the temporal dynamics associated 
with these generative models. We formalized this hypothesis in terms of a predictive 
coding framework and suggested a possible implementation of the predictive coding 
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Monkey Data Model 

0 50 
stimulus time (ms) 

Figure 16.6. Comparison of Monkey and Model Space-Time Response Plots. (Left) 
Sequence of PSTHs obtained by flashing optimally oriented bars at 20 positions across 
the 5"-wide receptive field (RF) of a complex cell in alert monkey V1 (from [23]). The 
cell's preferred directionis from the part of the RF represented at the bottom towards the 
top. Flash duration = 56 ms; inter-stimulus delay = 100 ms; 75 stimulus presentations. 
(Right) PSTHs obtained from a model neuron after stimulating the chain of neurons 
at 20 positions to the left and right side of the given neuron. Lower PSTHs represent 
stimulations on the preferred side while upper PSTHs represent stimulations on the 
null side. 

model within the laminar structure of the cortex. At the biophysical level, we showed 
that recent results on spike-timing dependent plasticity in recurrent cortical synapses 
are consistent with our suggested roles for cortical feedback. Data from model sim- 
ulations were shown to be similar to electrophysiological data from awake monkey 
visual cortex. 

An important direction for future research is exploring hierarchical models of spa- 
tiotemporal predictive coding based on spike-timing dependent sequence learning at 
multiple levels. A related direction of research is elucidating the role of spike timing 
in predictive coding. The chapter by Ballard, Zhang, and Rao in this book investi- 
gates the hypothesis that cortical c~rnmunication may occur via synchronous volleys 
of spikes. The spike-timing dependent learning rule appears to be especially well- 
suited for learning synchrony [20,1], but the question of whether the same learning 
rule allows the formation of multi-synaptic chains of synchronously firing neurons 
remains to be ascertained. 

The predictive coding model is closely related to models based on sparse coding 
(see the chapters by Olshausen and Lewicki) and to competitive/divisive normaliza- 
tion models (see the chapters by Piepenbrock and Wainwright, Schwartz, and Simon- 
celli). These models share the goal of redundancy reduction but attempt to achieve 
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this goal via different means (for example, by using sparse prior distributions on the 
state vector r or by dividing it with a normalization term). The model described in 
this chapter additionally includes a separate component in its generative model for 
temporal dynamics, which allows prediction in time as well as space. The idea of se- 
quence learning and prediction in the cortex and the hippocampus has been explored 
in several previous studies [I, 28,30,36,5,13,27]. Our biophysical simulations sug- 
gest a possible implementation of such predictive sequence learning models in cor- 
tical circuitry. Given the general uniformity in the structure of the neocortex across 
different areas [ I 2  40,161 as well as the universality of the problem of learning tem- 
poral sequences in both sensory and motor domains, the hypothesis of predictive 
coding and sequence learning may help provide a unified probabilistic framework 
for investigating cortical information processing. 
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